Схемотехника компьютерных БП

Ремонт TRX. Обмен опытом

Р. АЛЕКСАНДРОВ,

 Импульсные блоки питания (ИБП) персональных компьютеров обладают важными преимуществами — небольшими размерами и массой. Однако они построены по довольно сложным схемам, что затрудняет поиск и устранение неисправностей. Автор предлагаемой статьи, рассказывая о схемотехнике этих блоков, опирается на опыт работы с ИБП, так называемого формата AT. Редакция решила опубликовать эту статью, так как превалирующие сегодня на рынке ИБП для компьютеров формата АТХ имеют много общего со своими предшественниками.

ИБП бытовых компьютеров рассчитаны на работу от сети однофазного переменного тока (110/230 В, 60 Гц ≈ импортные, 127/220 В, 50 Гц ≈ отечественного производства). Поскольку сеть 220 В, 50 Гц в России общепринята, проблемы выбора блока на нужное сетевое напряжение не существует. Нужно лишь убедиться, что переключатель сетевого напряжения на блоке (если он имеется) установлен в положение 220 или 230 В. Отсутствие переключателя говорит о том, что блок способен работать в обозначенном на его этикетке интервале сетевых напряжений без каких-либо переключений. ИБП, рассчитанные на частоту 60 Гц, безупречно работают в сети 50 Гц.

К системным платам формата AT ИБП подключают двумя жгутами проводов с розетками Р8 и Р9, показанными на рис. 1 (вид со стороны гнезд). Указанные в скобках цвета проводов стандартны, хотя не все изготовители ИБП их строго соблюдают. Чтобы правильно сориентировать розетки при подключении к вилкам системной платы, существует простое правило: четыре черных провода (цепь GND), подходящие к обеим розеткам, должны быть расположены рядом.

Основные цепи питания системных плат формата АТХ сосредоточены в разъеме, показанном на рис. 2. Как и в предыдущем случае, вид со стороны гнезд розетки. ИБП этого формата имеют вход дистанционного управления (цепь PS-ON), при соединении которого с общим проводом (цепью СОМ ≈ "common", эквивалентом GND) включенный в сеть блок начинает работать. Если цепь PS-ON≈СОМ разорвана, напряжения на выходах ИБП отсутствуют, за исключением "дежурных" +5 В в цепи +5VSB. В этом режиме потребляемая от сети мощность очень незначительна.

ИБП формата АТХ бывают снабжены дополнительной выходной розеткой, показанной на рис. 3. Назначение ее цепей следующее:


FanM ≈ выход датчика скорости вращения вентилятора, охлаждающего ИБП (два импульса на один оборот);
FanC ≈ аналоговый (0...12 В) вход управления скоростью вращения этого вентилятора. Если этот вход отключен от внешних цепей или на него подано постоянное напряжение более 10 В, производительность вентилятора максимальна;
3.3V Sense ≈ вход сигнала обратной связи стабилизатора напряжения +3,3 В. Его соединяют отдельным проводом непосредственно с выводами питания микросхем на системной плате, что позволяет скомпенсировать падение напряжения на подводящих проводах. Если дополнительная розетка отсутствует, эта цепь бывает выведена на гнездо 11 основной розетки (см. рис. 2);
1394R ≈ минус изолированного от общего провода источника напряжения 8...48 В для питания цепей интерфейса IEEE-1394;
1394V ≈ плюс того же источника.

ИБП любого формата обязательно снабжают несколькими розетками для питания дисководов и некоторых других периферийных устройств компьютера.

Каждый "компьютерный" ИБП выдает логический сигнал, называемый R G. (Power Good) в блоках AT или PW-OK (Power OK) в блоках АТХ, высокий уровень которого свидетельствует, что все выходные напряжения находятся в допустимых пределах. На "материнской" плате компьютера этот сигнал участвует в формировании сигнала системного сброса (Reset). После включения ИБП уровень сигнала RG. (PW-OK) некоторое время остается низким, запрещая работу процессора, пока в цепях питания не завершатся переходные процессы.

При отключении сетевого напряжения или внезапно возникшей неисправности ИБП логический уровень сигнала P. G. (PW-OK) изменяется прежде, чем выходные напряжения блока упадут ниже допустимых значений. Это вызывает остановку процессора, предотвращает искажение данных, хранящихся в памяти, и другие необратимые операции.

Взаимозаменяемость ИБП можно оценить по следующим критериям.

Число выходных напряжений для питания IBM PC формата AT должно быть не менее четырех (+12 В, +5 В, -5 В и -12 В). Максимальный и минимальный выходные токи регламентируют отдельно для каждого канала. Их обычные значения для источников различной мощности приведены в табл. 1. Компьютерам формата АТХ дополнительно необходимы +3,3 В и некоторые другие напряжения (о них было сказано выше).

Учтите, что нормальная работа блока при нагрузке меньше минимальной не гарантирована, а иногда такой режим просто опасен. Поэтому включать ИБП без нагрузки в сеть (например, для проверки) не рекомендуется.

Мощность блока питания (суммарная по всем выходным напряжениям) в полностью укомплектованном периферийными устройствами бытовом ПК должна быть не менее 200 Вт. Практически необходимо иметь 230...250 Вт, а при установке дополнительных "винчестеров" и приводов CD-ROM может потребоваться и больше. Сбои в работе ПК, особенно возникающие в моменты включения электродвигателей упомянутых устройств, нередко связаны именно с перегрузкой блока питания. Компьютеры, используемые в качестве серверов информационных сетей, потребляют до 350 Вт. ИБП небольшой мощности (40... 160 Вт) применяют в специализированных, например, управляющих компьютерах с ограниченным набором периферии.

Объем, занимаемый ИБП, обычно растет за счет увеличения его длины в сторону передней панели ПК. Установочные размеры и точки крепления блока в корпусе компьютера остаются неизменными. Поэтому любой (за редкими исключениями) блок удастся установить на место отказавшего.

Основой большинства ИБП служит двухтактный полумостовой инвертор, работающий на частоте в несколько десятков килогерц. Напряжение питания инвертора (приблизительно 300 В) ≈ выпрямленное и сглаженное сетевое. Собственно инвертор состоит из узла управления (генератора импульсов с промежуточным каскадом усиления мощности) и мощного выходного каскада. Последний нагружен на высокочастотный силовой трансформатор. Выходные напряжения получают с помощью выпрямителей, подключенных к вторичным обмоткам этого трансформатора. Стабилизация напряжений производится с помощью широтно-импульсной модуляции (ШИМ) импульсов, генерируемых инвертором. Обычно стабилизирующей ОС охвачен лишь один выходной канал, как правило, +5 или +3,3 В. В результате напряжения на других выходах не зависят от напряжения в сети, но остаются подверженными влиянию нагрузки. Иногда их дополнительно стабилизируют с помощью обычных микросхем-стабилизаторов.

СЕТЕВОЙ ВЫПРЯМИТЕЛЬ

В большинстве случаев этот узел выполняют по схеме, подобной показанной на рис. 4, различия лишь в типе выпрямительного моста VD1 и большем или меньшем числе защитных и предохранительных элементов. Иногда мост собран из отдельных диодов. При разомкнутом выключателе S1, что соответствует питанию блока от сети 220...230 В, выпрямитель ≈ мостовой, напряжение на его выходе (соединенных последовательно конденсаторах С4, С5) близко к амплитуде сетевого. При питании от сети 110... 127 В, замкнув контакты выключателя, превращают устройство в выпрямитель с удвоением напряжения и получают на его выходе постоянное напряжение, вдвое большее амплитуды сетевого. Подобное переключение предусматривают в ИБП, стабилизаторы которых удерживают выходные напряжения в допустимых пределах лишь при отклонении сетевого на ╠20%. Блоки с более эффективной стабилизацией способны работать при любом сетевом напряжении (как правило, от 90 до 260 В) без переключения.

Резисторы R1, R4 и R5 предназначены для разрядки конденсаторов выпрямителя после его отключения от сети, а С4 и С5, кроме того, выравнивают напряжения на конденсаторах С4 и С5. Терморезистор R2 с отрицательным температурным коэффициентом ограничивает амплитуду броска тока зарядки конденсаторов С4, С5 в момент включения блока. Затем в результате саморазогрева его сопротивление падает, и он практически не влияет на работу выпрямителя. Варистор R3 с классификационным напряжением больше максимальной амплитуды сетевого защищает от выбросов последнего. К сожалению, этот варистор бесполезен при случайном включении блока с замкнутым выключателем S1 в сеть 220 В. От тяжелых последствий этого спасает замена резисторов R4, R5 варисторами с классификационным напряжением 180...220 В, пробой которых влечет за собой сгорание плавкой вставки FU1. Иногда варисторы подключают параллельно указанным резисторам или только одному из них.

Конденсаторы С1 ≈ СЗ и двухобмо-точный дроссель L1 образуют фильтр, защищающий компьютер от проникновения помех из сети, а сеть ≈ от помех, создаваемых компьютером. Через конденсаторы С1 и СЗ корпус компьютера связан по переменному току с проводами сети. Поэтому напряжение прикосновения к незаземленному компьютеру может достигать половины сетевого. Это не опасно для жизни, так как реактивное сопротивление конденсаторов достаточно велико, но нередко приводит к выходу из строя интерфейсных цепей в момент подключения к компьютеру периферийных устройств.

МОЩНЫЙ КАСКАД ИНВЕРТОРА

На рис. 5 показана часть схемы распространенного ИБП GT-150W. Импульсы, сформированные узлом управления, через трансформатор Т1 поступают на базы транзисторов VT1 и VT2, поочередно открывая их. Диоды VD4, VD5 защищают транзисторы от напряжения обратной полярности. Конденсаторы С6 и С7 соответствуют С4 и С5 в выпрямителе (см. рис. 4). Напряжения вторичных обмоток трансформатора Т2 выпрямляют для получения выходных. Один из выпрямителей (VD6, VD7 с фильтром L1C5) показан на схеме.

Большинство мощных каскадов ИБП отличаются от рассмотренного лишь типами транзисторов, которые могут быть, например, полевыми или содержать встроенные защитные диоды. Существует несколько вариантов исполнения базовых цепей (для биполярных) или цепей затвора (для полевых транзисторов) с разным числом, номиналами и схемами включения элементов. Например, резисторы R4, R6 могут быть подключены непосредственно к базам соответствующих транзисторов.

В установившемся режиме узел управления инвертором питают выходным напряжением ИБП, но в момент включения оно отсутствует. Существуют два основных способа получить необходимое для пуска инвертора напряжение питания. Первый из них реализован в рассматриваемой схеме (рис. 5). Сразу после включения блока выпрямленное сетевое напряжение поступает через резистив-ный делитель R3 ≈ R6 в базовые цепи транзисторов VT1 и\/Т2, приоткрывая их, причем диоды VD1 и VD2 предотвращают шунтирование участков база-эмиттер транзисторов обмотками II и III трансформатора Т1. В это же время происходит зарядка конденсаторов С4, С6 и С7, причем ток зарядки конденсатора С4, протекая по обмотке I трансформатора Т2 и по части обмотки II трансформатора Т1, наводит в обмотках II и III последнего напряжение, открывающее один из транзисторов и закрывающее другой. Какой из транзисторов закроется, а какой ≈ откроется, зависит от асимметрии характеристик элементов каскада.

В результате действия положительной ОС процесс протекает лавинообразно, а наведенный в обмотке II трансформатора Т2 импульс через один из диодов VD6, VD7, резистор R9 и диод VD3 заряжает конденсатор СЗ до напряжения, достаточного для начала работы узла управления. В дальнейшем он питается по той же цепи, а выпрямленное диодами VD6, VD7 напряжение после сглаживания фильтром L1C5 поступает на выход+12 В ИБП.

Вариант цепей начального запуска, использованный в ИБП LPS-02-150XT, отличается только тем, что напряжение на делитель, аналогичный R3 ≈ R6 (рис. 5), подают от отдельного однополупериодного выпрямителя сетевого напряжения с конденсатором фильтра небольшой емкости. В результате транзисторы инвертора приоткрываются раньше, чем зарядятся конденсаторы фильтра основного выпрямителя (С6, С7, см. рис. 5), что обеспечивает более уверенный запуск.

Второй способ питания узла управления во время пуска предусматривает наличие специального понижающего трансформатора небольшой мощности с выпрямителем, как показано на схеме рис. 6, примененной в ИБП PS-200B. Число витков вторичной обмотки трансформатора выбрано таким образом, чтобы выпрямленное напряжение было немного меньшим выходного в канале +12 В блока, но достаточным для работы узла управления. Когда выходное напряжение ИБП достигает номинала, диод VD5 открывается, диоды моста VD1 ≈ VD4 остаются закрытыми в течение всего периода переменного напряжения и узел управления переходит на питание выходным напряжением инвертора, не потребляя больше энергии от "пускового" трансформатора.

В мощных каскадах инверторов, запускаемых таким образом, необходимость в начальном смещении на базах транзисторов и положительной обратной связи отсутствует. Поэтому не требуется резисторов R3, R5, диоды VD1, VD2 заменяют перемычками, а обмотку II трансформатора Т1 выполняют без отвода (см. рис. 5).

ВЫХОДНЫЕ ВЫПРЯМИТЕЛИ

На рис. 7 показана типовая схема четы рехканального выпрямительного узла ИБП. Чтобы не нарушать симметрии пе-ремагничивания магнитопровода силового трансформатора выпрямители строят только по двухполупериодным схемам, причем мостовые выпрямители, для которых характерны повышенные потери, почти не применяют. Главная особенность выпрямителей в ИБП ≈ сглаживающие фильтры, начинающиеся с индуктивности (дросселя). Напряжение на выходе выпрямителя с подобным фильтром зависит не только от амплитуды, но и от скважности (отношения длительности к периоду повторения) поступающих на вход импульсов. Это дает возможность стабилизировать выходное напряжение, изменяя скважность входного. Применяемые во многих других случаях выпрямители с фильтрами, начинающимися с конденсатора, подобным свойством не обладают. Процесс изменения скважности импульсов обычно называют ШИМ ≈ широтно-импульсной модуляцией (англ. PWM ≈ Pulse Width Modulation).

Так как амплитуда импульсов, пропорциональная напряжению в питающей сети, на входах всех имеющихся в блоке выпрямителей изменяется по одинаковому закону, стабилизация с помощью ШИМ одного из выходных напряжений стабилизирует и все остальные. Чтобы усилить этот эффект, дроссели фильтров L1.1 ≈ L1.4 всех выпрямителей намотаны на общем магнитопроводе. Магнитная связь между ними дополнительно синхронизирует происходящие в выпрямителях процессы.

Для правильной работы выпрямителя с L-фильтром необходимо, чтобы ток его нагрузки превышал некоторое минимальное значение, зависящее от индуктивности дросселя фильтра и частоты импульсов. Эту начальную нагрузку создают резисторы R4 ≈ R7, подключенные параллельно выходным конденсаторам С5 ≈ С8. Они же служат для ускорения разрядки конденсаторов после выключения ИБП.

http://www.chipinfo.ru/literature/radio/200205/p21-23.html